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A quantum-mechanical theory based on a Green’s function technique has been applied to calculate the
shifts and the widths of hydrogen lines. Strong collision contributions have been treated via partial sum-
mation of the corresponding perturbation series. Therefore, the developed theory contains no arbitrary
cutoff parameters. The calculated widths and shifts have been compared to those given by a close-
coupling approach [K. Unnikrishnan and J. Callaway, Phys. Rev. A 44, 3001 (1991); 43, 3619 (1991)],
semiclassical results of the unified theory, and Griem’s cutoff procedure [H. R. Griem, Phys. Rev. A 38,
2943 (1988)] for the perturbation theory. Electronic contributions to widths and shifts of the hydrogen
lines up to main quantum numbers n <4 without arbitrary cutoff parameters have been calculated.

PACS number(s): 52.25.Rv, 32.70.Jz

I. INTRODUCTION

The most successful theoretical approach to the elec-
tronic contribution to the shift of hydrogen spectral lines
until now has been given by Griem [3,4]. With the help
of the proposed semiclassical theory, a lot of line-shift
calculations have been carried out. For hydrogen lines,
this theory had to be extended to the shift contributions
resulting from An =0 interactions [5], which are due to
quantum-mechanical effects [6]. Because of the applied
second-order perturbation theory, however, this theory is
restricted to weak emitter-perturber interactions only.
The corresponding integrals for shifts and widths diverge
for small impact parameters. To avoid such divergencies,
a cutoff procedure has been applied. Thereby, a minimal
impact parameter has been chosen in such a way that the
unitarity of the corresponding scattering matrix is
preserved. Unfortunately, the resulting shifts depend
strongly on the choice of such a cutoff parameter. Fur-
ther, the amount of strong collision contributions to the
shift remains questionable.

Of course, there are some other ways to avoid diver-
gencies for strong collisions. As is well known, the
unified theory [7—11] includes strong collisions without a
perturbation expansion. Due to the applied no-
quenching approximation, however, the main contribu-
tions to the shift (due to An<0 interactions) cannot be
calculated within this theory. Another way to deal with
strong collisions is to make use of Baranger’s relation be-
tween shift and width of an atomic level and the scatter-
ing phase shifts [12—14]. Thus, the phase shifts for elec-
tron scattering at excited atomic levels have to be calcu-
lated. For the hydrogen lines L,, Lg, and H,, this has
been done by Unnikrishnan and Callaway who include
the states 1s, 2s, 2p, 3s, 3p, and 3d in the corresponding
close-coupling equations. The other energy levels have
been treated via an optical potential [15,1,2]. The result-
ing line shifts (including electronic as well as ionic shift
contributions) are much smaller than corresponding ex-

1063-651X/95/52(6)/6658(6)/$06.00 52

perimental ones. This is especially true for the H, line.
The authors suspected that they would have to include
additionally the n =4 states explicitly in the close-
coupling equations in order to reach a better agreement
between theoretical and experimental line shifts.

Convergent expressions for shifts and widths even
within a low-order perturbation expansion can be
reached using a quantum-mechanical many-particle
theory. The inclusion of quantum-mechanical effects re-
moves the divergence for strong collisions, whereas
many-particle effects are responsible for the convergence
at large impact parameters. Nevertheless, contributions
from strong collisions remain overestimated [16]. In a
previous paper [17], a quantum-mechanical treatment of
strong collision contributions has been given by one of
the authors. This approach is similar to that given by
Dharma-wardana [18], who calculated an all-order mass
operator within a one-particle Green’s function ap-
proach. Introducing two-particle Green’s functions, shift
and width of the hydrogen L, line have been calculated.
Thereby, a low-order perturbation expansion has been
avoided via partial summation of the corresponding T
matrix, which describes the full radiator-perturber in-
teraction.

The aim of this paper is to apply the theory developed
in [17] to calculate the electronic contributions to shifts
and widths of several hydrogen lines. The results will be
compared to those given by other theories. The compar-
ison with experimental data would require the inclusion
of ion effects and the calculation of full line profiles as
done in [19]. Full line shifts of the H,, Hg, and P,, lines
will be given in a forthcoming paper.

II. THEORY

Starting from the relationship between optical proper-
ties and the dielectric function, a systematic approach to
spectral line shapes based on a Green’s function tech-
nique has been developed [16,20-23]. A diagram tech-
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nique has been applied to carry out the perturbation ex- G

pansion in a very systematic manner. It has been shown
that shift and asymmetry may be derived from the self-

energy, which describes the perturbation of the radiator f i
I

; . (1)
due to the plasma environment. Allowing also for strong E = | ng
2

perturber-radiator interaction, the corresponding self-
energy is given by the following diagram: GO

where G9 and G represent the free one- and two-particle propagator, respectively. For the screened potential the
well-known relation

V3G, 0) = V(@) + iV(@IRG,0)V5q,0) )

holds, where ¥V (g) is the pure Coulomb potential and ITRPA is the polarization function in random-phase approximation
(RPA). The three-particle Green’s function G represents the full perturber-radiator interaction by considering a spe-
cial scattering channel for the interaction between a two-particle bound state and a perturber. Within the ladder ap-
proximation, a Dyson equation may be written for the static part of the interaction in (1),
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Of course, it is impossible to find the exact solution of this three-particle scattering problem. An approximate solution
may be found if one considers only those parts of G$® which describe elastic scattering. That results in setting §=g" in
Eq. (3). Furthermore, the principal quantum numbers of the states &, a’, and « are the same within this approximation.
In calculations for isolated lines, the approximations introduced above allow us to find a solution for the three-particle
T matrix T% directly from Eq. (3). When dealing with overlapping lines, however, one has to carry out the sum over all
degenerate states & and o’ which have the same principal quantum number as . We assumed here, however, that the
Green’s function G%° is diagonal in the quantum numbers, too. Neglecting further any correlations between Stark and
Doppler broadening, for the three-particle T matrix T¢ one finds the approximate solution

Te,b~i M2 (—q)V(g)

e

: o 4)
e 1+id(n,a,p,q)
The self-energy which includes strong-collision contributions is therefore given by
—112
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FIG. 1. Integrand of the imaginary part of the self-energy for
the {n,I,m}=1{3,2,2} level of a hydrogen atom at an electron
density of 6.4X10' cm™3. The result obtained from partial
summation (solid line) is compared with the Born approxima-
tion result (dashed line). The perturbing level is
{n,I,m}=1{3,1,1} (An=0) and the temperature is 12 000 K.

The term [1+i4 (n,a,5,§)]" ! causes the deviation from
the Born approximation for large ¢ and therefore the
correction for the strong-collision contribution.

We summarize now the applied approximations. In or-
der to describe strong-collision contributions, via partial
summation, an infinite sum over parts of the perturbation
series is included. In spite of this approximation and the
restriction to elastic scattering partly applied in Eq. (3),
the resulting self-energy is correct up to the third order
with respect to the interaction potential V. Furthermore,
we consider the A/ =0 and A/=1 terms of the multipole
expansion of the matrix elements. That means we in-
clude monopolelike and dipolelike interactions between
radiator and perturber. To avoid too much numerical
effort, in computing the self-energy according to Eq. (5),
instead of the correction term A4 (n,a,p,q) its average

10° Re Z,,(9)
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FIG. 2. Integrand of the real part of the self-energy for the
{n,l,m}=1{3,2,2} level of a hydrogen atom at an electron den-
sity of 6.4X10'® cm™3. The result obtained from partial sum-
mation (solid line) is compared with the Born approximation
(dashed line). The perturbing level is {n,l,m}={4,3,3}
(An=1) and the temperature is 12 000 K.
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TABLE L. Electronic with (&) of the level {2,1,1}. The elec-
tron density is 2 X 10'7 cm .

This paper

Unnikrishnan Partial Born
T (eV) [2] summation approximation

1 0.064 0.050 0.065

2 0.053 0.040 0.053

3 0.048 0.035 0.046

5 0.042 0.030 0.037

over the angles of g has been applied,

Z(n,a,ﬁ,q)=fquA(n,a,ﬁ,i) , 7

b~

and only the momentum transfer g
has been considered.

in the direction of p

III. RESULTS

In order to investigate the influence of strong collisions
on shift and width of spectral lines, one has to look at
their ¢ integrands according to Eq. (5). For small
momentum transfers ¢ (which correspond to large impact
parameters within the semiclassical theory) this integrand
should be close to that obtained within a second-order
Born approximation. For larger values of ¢ the Born ap-
proximation becomes invalid. Therefore, the correction
due to strong collision contributions 4(n,a,p,q) should
become important for large momentum transfers or small
impact parameters.

Figures 1 and 2 show the g integrand of the imaginary
and the real part of the self-energy for the
{n,l1,m}=1{3,2,2} level of hydrogen at an electron densi-
ty of 6.4%10 cm ™3, and a temperature of 12000 K.
The main contributions to hydrogen line shifts result
from virtual Arn =1 transitions whereas for the width
only An =0 transitions are important. Therefore, for
demonstration in this figure the perturbing levels are
chosen to be {3,1,1} for the imaginary part and {4,3,3}
for the real part of the self-energy.

The self-energy obtained according to Eq. (5) is com-
pared to those resulting from a Born approximation. It
becomes obvious that for large momentum transfers, de-
viations from the Born approximation result become im-
portant. This is especially true for the shift of the energy
levels which would be overestimated within a second-
order Born approximation by a factor of 2 (Fig. 2). For
the width of the central component, however, the Born

TABLE II. Electronic width (A) of the 3d-2p transition. The

electron density is 10'” cm 3.

This paper
Unnikrishnan Partial Born
T (eV) 1] summation approximation
1 4.04 3.25 4.37
2 3.38 2.67 3.41
3 3.0 2.35 2.92
5 2.75 2.14 2.62
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FIG. 3. Ratio r =ImZy, 3;,/Im35" 5, vs
J the electron density n, at different tempera-
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approximation is in better coincidence with the partial
summation result. The deviation from the Born approxi-
mation for the other components is larger.

For high temperatures one would expect that nearly all
collisions become weak, and the Born approximation
should work very well. Figures 3 and 4 show the rela-
tions between the shift and width including strong col-
lision contributions according to Eq. (5) and those ob-
tained within a Born approximation. As is to be expected,
for higher temperatures the theory approaches toward its
limiting case—the Born approximation.

The pole structure of the g integrand in Figs. 1 and 2 is
probably a result of the approximations introduced
above. However, instead of the exact behavior of the g
integrand, the integrals for width and shift are important
for line-shape calculations.

Nevertheless, problems occur for the An =0 contribu-
tions to the shift. The integrand of the imaginary part of
the An =0 contributions is much larger than that of the
real part. Because the imaginary part and the real part of
the self-energy are related via the Kramers-Kronig rela-

tion, the pole in the g integrand of the imaginary part
causes a large peak in the g integrand of the real part.
Since this peak leads to an overestimation of the An =0
contributions to the line shift, these contributions are es-
timated to be the same percentage of the Born approxi-
mation result as obtained for the other shifts.

Unnikrishnan and Callaway [1,2] calculated the S-
matrix elements for electron-atom scattering from close-
coupling equations. All states of the hydrogen atom up
to n=3 were treated exactly whereas the upper states
were approximated by an optical potential using 12 pseu-
dostates. Therefore we shall compare our results with
this calculation.

For the width of the L, line (n =2) the close-coupling
results agree within a few percent with those given by the
Born approximation (Table I). From the partial summa-
tion we obtain somewhat smaller values, which approach
the Born approximation at higher temperatures. At high
temperatures the close-coupling width even exceeds the
Born approximation. It is not obvious which physical
reason should cause such an effect. Also for the 3d-2p
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TABLE III. FWHM (A) of the L, and the H, line (static ion approximation). The electron density

is 107 cm 3.
Simulation MMM “Unified theory” This paper
T (K) [25] [26] [27,28] [7] Others 0=AlI=1 Al=1
L,
10000 0.062 0.065 0.060 0.053 0.058* 0.0672 0.065
H,
10000 6.84 6.14 6.11 7.40° 7.17 6.77

2Reference [29]
®Reference [30].

(central component of H,) transition one may observe the
same qualitative behavior (Table II) but larger deviations.

Most of the other theories give the full line profiles
rather than “purely” theoretical values of the electronic
width. Some of them, such as the computer simulations
or the model-microfield method (MMM), are even in
principle unable to give single constituents of the profile.
Therefore we compare the full width at half maximum
(FWHM) of both the L, and the H, line profiles in static
ion approximation (Table III) with other theories. This
quantity is very sensitive to differences in the electronic
width. Our theory yields—as would the close-coupling
approach —significantly larger half-widths than the semi-
classical theories. (From an extrapolation of the data of
Unnikrishnan and Callaway we estimate the correspond-
ing half-width of the H,, line to be approximately 8.32 A.)

Obviously this interesting result is due to the conse-
quent quantum-mechanical treatment of the electron-
atom-scattering problem in the theory presented and the
phase-shift calculations. Within semiclassical approaches
(“‘unified theory,” computer simulation, MMM, Griem’s
theory) the interaction between perturber and radiator is
reduced to the interaction between the atom and a field
caused by the perturber. The dipole approximation,
which is usually applied, neglects all other parts of a mul-
tipole expansion of the interaction term. The difference
between semiclassical and our quantal results arises from
the Al/=0 transitions, which are contained in the
quantum-mechanical theories (see Table III).

Considering the shift of the central L, component, one
finds an excellent agreement between the partial summa-
tion result and the scattering phase-shift calculation for
temperatures above 20000 K (Table IV). However, for

TABLE IV. Electronic shift (&) of the level {2,1,1}. The
electron density is 2X 10'7 cm™>.

10000 K the deviation is near 30%. The numerous ap-
proximations used in both theories may be the reason.

On the other hand, the line shifts given by Unnikrish-
nan and Callaway for the H, line are too small (Table V).
The latter is true not only in comparison with our results
but also in comparison with the experiment [2]. As al-
ready suspected by the authors, this drawback is prob-
ably an effect of the optical potential approximation for
the atomic states with n > 3. The main contributions to
the shift of a level with n =3 arise from perturbations by
the levels with n =4, which are obviously underestimated
by the optical potential approximation. The results for
the linewidths should not be affected, since An0 contri-
butions to the linewidth are negligible.

As already mentioned, our theory needs no cutoff pa-
rameters. For comparison, we may define, however, a
maximal transition momentum at which the integrand of
the Born approximation has to be cut off in order to ob-
tain the same result as follows from our partial summa-
tion of the perturbation series. Assuming that, in princi-
ple, the transition momentum is the inverse impact pa-
rameter (g =1/p), it is also possible to define a minimal
impact parameter. It should be noted, however, that we
may find a cutoff parameter only for a special atomic
state, but not for a spectral line, as done by Griem [3,4].
In order to compare both results we assumed that
Griem’s impact parameter for a spectral line is equal to
that for the upper atomic state of the considered transi-
tion. Such minimal impact parameters are compared
with those given by Griem for various atomic states in
Table VI. It is apparent that the cutoff parameters agree
quite well for 12000 K. As it becomes obvious from
Table VII, this coincidence becomes poor for higher tem-

TABLE V. Electronic shift (A) of the 3d-2p transition. The
electron density is 10'” cm 3.

- This paper This paper
Unnikrishnan Partial Born Unnikrishnan Partial Born
T (eV) [2] summation approximation T (eV) [1] summation approximation
1 0.0087 0.012 0.030 1 0.414 0.518 1.47
2 0.011 0.011 0.025 2 0.262 0.524 1.09
3 0.011 0.011 0.022 3 0.228 0.511 0.91
5 0.011 0.010 0.018 4 0.221 0.492 0.79




52 QUANTUM-MECHANICAL TREATMENT OF STRONG ELECTRON- . ..

TABLE VI. “Cutoff”” parameter p,,;,/ap for the An =1 tran-
sition of the hydrogen atom at an electron density of 10'” cm ™3
and a temperature of 12 000 K.
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TABLE VII. “Cutoff” parameter p;,/ap for the An=1
transition of the hydrogen atom at the level n =3, an electron
density of 10!'” cm ™3, and different temperatures.

Atomic level This paper Griem /K This paper Griem
n=2 7.30 9.20 12 000 16.24 15.34
n=3 16.24 15.34 50000 15.53 7.87
n =4 27.86 21.47 100 000 15.20 5.57

peratures. Griem’s minimal impact parameter decreases
faster with the temperature. Thus, our shifts are smaller
than those given by Griem, which is in good agreement
with experiment [24].

IV. CONCLUSIONS

A full quantum-mechanical theory has been applied to
calculate hydrogen line shifts. In order to be able to deal
with weak as well as strong collisions, the electron-
emitter interaction has been treated via partial summa-
tion of the corresponding perturbation series. Thus, the
theory developed contains no arbitrary parameters. The
calculated shifts for the n =2 levels agree well with the
results given by Unnikrishnan and Callaway, whereas for
the n =3 levels the results for the line shift are larger
than those of the phase-shift calculations. Keeping in
mind that the shifts caused by the ions of the plasma
reduce the resulting line shifts, this is in agreement with
experimental results.

For higher temperatures, the shifts obtained from this
theory are smaller than those given by Griem, which is in

agreement with experimental results. The linewidths ob-
tained exceed those of semiclassical theories because the
virtual A/ =0 (monopole) contributions are automatically
included in quantum-mechanical theories. However,
they are smaller than those given by Unnikrishnan and
Callaway. These comparisons serve as a test of the
theory. The final purpose of this theory is the calculation
of asymmetric and shifted line profiles from first princi-
ples. The inclusion of the ion-radiator interaction into
the calculation of the profile will be the subject of a forth-
coming paper.
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